2cos^2(2x)+1=2senx*cosx

Simple and best practice solution for 2cos^2(2x)+1=2senx*cosx equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2cos^2(2x)+1=2senx*cosx equation:


Simplifying
2cos2(2x) + 1 = 2senx * cosx

Remove parenthesis around (2x)
2cos2 * 2x + 1 = 2senx * cosx

Reorder the terms for easier multiplication:
2 * 2cos2 * x + 1 = 2senx * cosx

Multiply 2 * 2
4cos2 * x + 1 = 2senx * cosx

Multiply cos2 * x
4cos2x + 1 = 2senx * cosx

Reorder the terms:
1 + 4cos2x = 2senx * cosx

Multiply ensx * cosx
1 + 4cos2x = 2cenos2x2

Solving
1 + 4cos2x = 2cenos2x2

Solving for variable 'c'.

Move all terms containing c to the left, all other terms to the right.

Add '-2cenos2x2' to each side of the equation.
1 + -2cenos2x2 + 4cos2x = 2cenos2x2 + -2cenos2x2

Combine like terms: 2cenos2x2 + -2cenos2x2 = 0
1 + -2cenos2x2 + 4cos2x = 0

Add '-1' to each side of the equation.
1 + -2cenos2x2 + -1 + 4cos2x = 0 + -1

Reorder the terms:
1 + -1 + -2cenos2x2 + 4cos2x = 0 + -1

Combine like terms: 1 + -1 = 0
0 + -2cenos2x2 + 4cos2x = 0 + -1
-2cenos2x2 + 4cos2x = 0 + -1

Combine like terms: 0 + -1 = -1
-2cenos2x2 + 4cos2x = -1

Reorder the terms:
1 + -2cenos2x2 + 4cos2x = -1 + 1

Combine like terms: -1 + 1 = 0
1 + -2cenos2x2 + 4cos2x = 0

The solution to this equation could not be determined.

See similar equations:

| k^2+2=67 | | y/2-1/5=2-y/3 | | X*3+4=24 | | -2x^2+8x+10=18 | | 8p^2-4p-20=-6 | | (x*x)+6x+9=81 | | 0.5(30-n)=4 | | (X-5)/4=-12/3 | | 12x^2-2x+8=0 | | 0.5n=50 | | (7-3)(7+3)= | | 7/6/-7/12 | | 98.4n=7.38 | | 0.15=1/x | | -15/5= | | 50y^2-8=0 | | 2(5)+5(-5)= | | 9x-3t=-4 | | 5e+5e= | | 15x=5/3 | | -6(-6)+6= | | 5e+6d= | | -6x-6+6= | | 2d+9d+3d-7= | | z^2y^6= | | 2700=(n-2)180 | | 6*a+b*2=50 | | 2x(cosx)=1 | | a*4+b*5=34 | | 6.50+0.254= | | y*2+5=y-23 | | 4a+5b=34 |

Equations solver categories